751 research outputs found

    Development of far infrared detection techniques

    Get PDF
    This grant supports the development of a variety of advanced far infrared detection techniques that will be used in future NASA missions such as the Space Infrared Telescope Facility (SIRTF). These studies span the wavelength region of 30-200 microns and include development of focal planes and electronics that would utilize them. Efforts reported here represent collaborations among the University of Arizona's Steward Observatory; Lawrence Berkeley Laboratories (LBL); and the University of California at Berkeley. The overall goal of this program is to demonstrate extremely high performance detectors for low background applications between 30-200 microns. For the 40-120 micron region, the program is developing a 32x32 filled detector array. Previous work has demonstrated the required performance with a Z-Plane array architecture; we are now upgrading construction facilities and techniques to increase yields and reliability. We have completed the initial tradeoff analysis for the interconnects between the detectors and and readouts. We found satisfactory performance for both Flex-Cable and Tape Automated Bonding (TAB) devices, but analysis showed that an all-sapphire device would not meet our requirements. In addition, the effort continued to develop readouts that can operate close to the detector element temperature; success would substantially improve the manufacturability of the arrays. For the 100-200 micron range, previous work has demonstrated good performance with individual detector elements of stressed Ge:Ga; current efforts are to increase the quantum efficiency of these devices. Work continues to discover how to construct an alternate type of long wave detector, Ge:B Blocked Impurity Band devices. Following descoping of SIRTF, we are closing out the bolometer and refrigerator development. We documented the optical designs and approaches developed previously to meet the specific requirements of these detector types in terms of modulation of the signals for good photometric behavior within the constraints of a compact and self-contained cryogenic instrument. Further study was initiated for the Band 3 optical train, where we have concerns about complexity and the manufacturability of one component

    The Intrinsic Far-infrared Continua of Type-1 Quasars

    Full text link
    The range of currently proposed active galactic nucleus (AGN) far-infrared templates results in uncertainties in retrieving host galaxy information from infrared observations and also undermines constraints on the outer part of the AGN torus. We discuss how to test and reconcile these templates. Physically, the fraction of the intrinsic AGN IR-processed luminosity compared with that from the central engine should be consistent with the dust-covering factor. In addition, besides reproducing the composite spectral energy distributions (SEDs) of quasars, a correct AGN IR template combined with an accurate library of star-forming galaxy templates should be able to reproduce the IR properties of the host galaxies, such as the luminosity-dependent SED shapes and aromatic feature strengths. We develop tests based on these expected behaviors and find that the shape of the AGN intrinsic far-IR emission drops off rapidly starting at ∼20 μ\sim20~\mum and can be matched by an Elvis et al. (1994)-like template with minor modification. Despite the variations in the near- to mid-IR bands, AGNs in quasars and Seyfert galaxies have remarkably similar intrinsic far-IR SEDs at λ∼20\lambda \sim 20-100 μ100~\mu m, suggesting similar emission character of the outermost region of the circumnuclear torus. The variations of the intrinsic AGN IR SEDs among the type-1 quasar population can be explained by the changing relative strengths of four major dust components with similar characteristic temperatures, and there is evidence for compact AGN-heated dusty structures at sub-kpc scales in the far-IR.Comment: Minor corrections to match the published version, 14 pages, 9 figures, 5 tables. The quasar intrinsic IR templates can be found at http://u.arizona.edu/~jianwei/data/AGN_temp.ascii or in the published pape

    Polar Dust, Nuclear Obscuration and IR SED Diversity in Type-1 AGNs

    Full text link
    Despite the hypothesized similar face-on viewing angles, the infrared emission of type-1 AGNs has diverse spectral energy distribution (SED) shapes that deviate substantially from the well-characterized quasar templates. Motivated by the commonly-seen UV-optical obscuration and the discovery of parsec-scale mid-IR polar dust emission in some nearby AGNs, we develop semi-empirical SED libraries for reddened type-1 AGNs built on the quasar intrinsic templates, assuming low-level extinction caused by an extended distribution of large dust grains. We demonstrate that this model can reproduce the nuclear UV-to-IR SED and the strong mid-IR polar dust emission of NGC 3783, the type-1 AGN with the most relevant and robust observational constraints. In addition, we compile 64 low-zz Seyfert-1 nuclei with negligible mid-IR star formation contamination and satisfactorily fit the individual IR SEDs as well as the composite UV to mid-IR composite SEDs. Given the success of these fits, we characterize the possible infrared SED of AGN polar dust emission and utilize a simple but effective strategy to infer its prevalence among type-1 AGNs. The SEDs of high-zz peculiar AGNs, including the extremely red quasars, mid-IR warm-excess AGNs, and hot dust-obscured galaxies, can be also reproduced by our model. These results indicate that the IR SEDs of most AGNs, regardless of redshift or luminosity, arise from similar circumnuclear torus properties but differ mainly due to the optical depths of extended obscuring dust components.Comment: 37 pages, 22 figures, 5 tables; accepted for publication in The Astrophysical Journal; the AGN templates can be retrieved from https://github.com/karlan/AGN_template

    The Correlation Between Metallicity and Debris Disk mass

    Full text link
    We find that the initial dust masses in planetary debris disks are correlated with the metallicities of their central stars. We compiled a large sample of systems, including Spitzer, the Herschel DUNES and DEBRIS surveys, and WISE debris disk candidates. We also merged 33 metallicity catalogs to provide homogeneous [Fe/H] and σ[Fe/H]\sigma_{[Fe/H]} values. We analyzed this merged sample, including 222 detected disks (74 warm and 148 cold) around a total of 187 systems (some with multiple components) and 440 disks with only upper limits (125 warm and 315 cold), around a total of 360 systems. The disk dust masses at a common early evolutionary point in time were determined using our numerical disk evolutionary code, evolving a unique model for each of the 662 disks backward to an age of 1 Myr. We find that disk-bearing stars seldom have metallicities less than [Fe/H] = -0.2 and that the distribution of warm component masses lacks examples with large mass around stars of low metallicity ([Fe/H] < -0.085). Previous efforts to find a correlation have been largely unsuccessful; the primary improvements supporting our result are: 1.) basing the study on dust masses, not just infrared excess detections; 2.) including upper limits on dust mass in a quantitative way; 3.) accounting for the evolution of debris disk excesses as systems age; 4.) accounting fully for the range of uncertainties in metallicity measurements; and 5.) having a statistically large enough sample.Comment: 13 pages, 7 figures, accepted for publication to Ap

    The Collisional Evolution of Debris Disks

    Full text link
    We explore the collisional decay of disk mass and infrared emission in debris disks. With models, we show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a slower value. The total disk mass falls off ~ t^-0.35 at its fastest point (where t is time) for our reference model, while the dust mass and its proxy -- the infrared excess emission -- fades significantly faster (~ t^-0.8). These later level off to a decay rate of M_tot(t) ~ t^-0.08 and M_dust(t) or L_ir(t) ~ t^-0.6. This is slower than the ~ t^-1 decay given for all three system parameters by traditional analytic models. We also compile an extensive catalog of Spitzer and Herschel 24, 70, and 100 micron observations. Assuming a log-normal distribution of initial disk masses, we generate model population decay curves for the fraction of debris disk harboring stars observed at 24 micron and also model the distribution of measured excesses at the far-IR wavelengths (70-100 micron) at certain age regimes. We show general agreement at 24 micron between the decay of our numerical collisional population synthesis model and observations up to a Gyr. We associate offsets above a Gyr to stochastic events in a few select systems. We cannot fit the decay in the far infrared convincingly with grain strength properties appropriate for silicates, but those of water ice give fits more consistent with the observations.Comment: 32 pages, 16 figures, emulateapj format, Accepted for publication in Ap
    • …
    corecore